The polymers space is vast and OEMs and processors alike are always in need of technical inputs to best evaluate which polymers are most suited to their specific end application.
At Poly Fluoro, we seek to demystify specialised polymers for those wishing to incorporate it in their applications.
PTFE Tubes are known for their versatility and durability.
As a material, it comes with the numerous properties of PTFE (Teflon), including temperature resistance, chemical resistance, electrical insulation and high-strength.
The high ratio of strength (both tensile and electrical) to weight gives us the option of using a much smaller tube of PTFE to do the same task that might require a lot more of a less capable material.
A high burst pressure means that both pneumatic and hydraulic systems would benefit tremendously from the use of PTFE tube. Similarly, a dielectric breakdown strength in the region of 150KV/mm implies that even a wall thickness as thin as 0.5mm allows for a breakdown resistance of 75KV.
Chemical lines, which often require a material that does not in any way react with the chemical inside it, benefit from the inert nature of PTFE. This means that even in the event that some unknown chemicals are present in the fluid passing through the tube, there is no risk that the tube will corrode or in any way impart its own reaction with the chemical.
PTFE tubes are known by many names across the industry:
Over the past decade we have seen a rapid shift from conventional machining to CNC machining. While CNC machined parts used to be required only in the most critical of applications earlier, they are now the mainstay, with even simple items like washers being churned out in this fashion, rather than depending on the perceived unpredictability of a manual system.
In the polymer space, while the shift to CNC has also been essential, there have been several complications that have arisen. We look at these here, in a bid to better understand the nuances of precision polymer machining and show that it is not always as straightforward as machining metals.
Grades and varieties
The first thing to realize is that the term “polymer” is both broad and vague. As a company deep rooted in PTFE (Teflon) as our core product, our experience into other polymers taught us that the differences in each make the process of CNC machining that much more unique. Let’s take a look at how some of the high-performance plastics behave:
PA 6/ PA 66 (Nylon or Polyamide) – Nylon machines easily, but due to its low melting point, the feed rate and RPM need to be optimized to ensure that burrs do not melt and stick to the part. Furthermore, the high moisture absorption of Nylon implies that coolants can rarely be used, as these would ‘swell’ the component, causing dimensional deviations
UHMWPE – like nylons, UHMWPE also suffers from having a very low melting point. Furthermore, as UHMWPE needs to be compression moulded, the orientation of the molecules within the part are not always predictable. Achieving high tolerances on UHMWPE is not always possible as a result
PEEK, PEI (Ultem), PI (Kapton) – these polymers are able to withstand high-temperatures and can therefore be run at higher speeds. However, due to the crystalline nature of the internal structures, the more stress applied during machining, the higher chance that the parts will crack. PEEK especially requires a special annealing process before it can be machined. In the event that multiple operations are required on a PEEK part, the part may be re-annealed between operations to ensure that the stress build up does not cause the part to crack later on.
The above examples are just a few of the peculiarities that each polymer brings. With polymers such as PTFE (Teflon), Delrin, PVDF (Kynar) and PVC, we have found the machining to be more straightforward. However, as the complexity of the part increases and the tolerances become tighter, the level of care needed increases, along with an increased need to understand the internal structure of the material.
Tolerances and dimensions
We are often approached by other companies also involved in some form of polymer machining, requesting whether we have any excess demand that they can support us with. Our first question is always “what tolerances are you able to achieve”?”. The answer is usually between 0.05mm and 0.1mm.
From our perspective this is not adequate. While it is true that polymers do not lend themselves to the dimensional stability of metals (where tolerances of up to 1 micron are sometimes demanded), we have found that with the proper programming and handling, polymers can be machined to achieve a consistent tolerance of within 10-20 microns.
It is in this endeavour that we have put a lot of our focus and effort. It is also why having CNC machines is alone not enough to ensure the parts would be of the highest possible precision. Knowing the material and understanding how the part needs to be handled – both during and after the machining process is complete, is critical to be able to get that extra 30-40 microns in tolerance.
The other complexity on dimensions relates to the strength of the material. The longer the component, the tougher it becomes to attain close tolerances at the end – as the material starts to bend slightly, throwing the dimensions off. Again, knowing what the polymer is capable of and machining in a way that minimizes the deflection that the material would experience is key to ensuring a consistently machined component.
Volumes
While polymer machined parts have certainly found their foothold across industries, the volumes remain tiny when compared with metals, or even some injection molded polymer components.
One of our concerns when shifting to CNC machining, was whether we could justify the expense against the low volumes of parts required. Keep in mind that apart from the machine cost itself, there are the added expenses of labour and special tooling.
Getting high-volume parts that also demand the criticality that we offer remains a crucial challenge.
Overall, the intricacies of polymer machining make it a rewarding experience. To be able to attain industry leading levels of tolerance across a whole range of polymers is something we are very proud of. So while CNC machining technologies certainly helped us move ahead, what set us apart was the ability to take the precision machining of polymers up a notch.
Expanded PTFE (ePTFE) Gasket Tape is increasingly becoming the preferred material of choice for any application requiring an on-site solution to both prevent and arrest leakages.
The material’s superior sealing properties combined with the ability to withstand both high temperatures and nearly all corrosive chemicals make it the obvious choice for engineers looking for a long term solution to sealing without worrying about the durability of the sealing material.
The fact that there are so many different names poses a challenge to market this product – since each end user may have their own terminology and thus search online accordingly.
The versatility of ePTFE Gasket Tapes extends across multiple industries, as shown in the info-graphic below.
The above photo shows the typical application of ePTFE Gasket Tape. Although this shows the joint sealant being applied around a metal flange, the tape is equally adept at sealing weaker materials such as glass or plastic. This is because the sealing effectiveness can be attained at low torques, allowing a completely air-tight seal even if the option to tighten around the medium is limited.
For anyone connected to the PTFE industry, the last 18 months have been fraught with anxiety. The shutting down of a few PTFE resin manufacturers in China in early 2017 caused a supply crunch that has yet to ease out, driving prices up as much as 60%.
Many believed that the imbalance between demand and supply of PTFE raw materials would spur a capacity expansion from those manufacturers still operational. However – as we earlier saw in 2011 – resin manufacturers opted instead to maintain capacity and allow prices to increase. From the point of view of companies like Gujarat Fluorochemicals (India) and Shangdong Dongyue (China), this appears to be a sensible strategy. Until early 2017, the price of PTFE resins had been steadily declining due to fierce competition between resin suppliers. The shutting down of Chinese plants would have come as a blessing for these companies, who have since seen their realizations increase.
But while a rational observer may argue that an upward price correction was certainly due in early 2017, pinpointing the “fair” price for PTFE has always been tricky. Not only is the PTFE industry minuscule in comparison to more familiar polymers such as PVC, Polypropylene and Polyethylene, but its irreplaceable properties as an engineering plastic allows resin manufacturers a lot of leeway to test the extent to which higher prices would be accommodated by processors such as ourselves. Considering the price increase has been a worldwide phenomenon, it has not been impossible to convince clients regarding the upward revision of rates. What has been taxing, is the instability. A client may be willing to revise rates once or twice, but when it becomes a monthly affair, one can expect some backlash.
Amid all the uncertainty, it appears processors may have found some solace in the protectionist tendencies of the current US government. When the US announced in October 2017 that they would be reviewing the anti-dumping policy in relation to PTFE resin supplies, no one took much notice. This administration has highlighted multiple instances where the competitiveness of the US economy was threatened by low-cost-countries. We never believed that much attention would be paid to a niche industry like PTFE.
The first and most obvious effect of a tariff such as this is to curb demand from the US for Indian and Chinese resins. Globally, North America is said to contribute to about 25% of PTFE demand, with the bulk of this coming from the US.
Our understanding of the price of Chemours resins (the erstwhile DuPont and the company that has lobbied to get the anti-dumping duties imposed) is that they lie between 1.25-1.6 times the price of resins from India. Hence, even with freight and other duties, Indian suppliers may still find some takers in the US market. It should however be noted that given the superior quality of Chemours’ material, processors cannot be expected to choose Indian resins, should the price differential be small.
With regards to China, the pricing is a little more opaque. There are several manufacturers, and each has their own rate contracts with their respective clients. Whether a 208% tariff is warranted or is merely the result of effective lobbying on the part of Chemours, we cannot really tell.
In a twist of undeniable irony, Russian manufacturers have been omitted from this tariff. When Gujarat Fluorochemicals successfully lobbied for anti-dumping duties into India, they made it a point to include both China and Russia in their report. The absence of Russia from the US’ anti-dumping measures means that they are well poised to benefit from the demand shift – assuming the US does not penalize them with any other general trade tariffs.
Supply realignment
Considering what a large share of the world’s demand the US commands, their focus inward will leave a lot of Indian and Chinese resin manufacturers in the cold. The move is likely to cause the capacities of Asian firms to come in line (if not even exceed) local demand. There is still a significant amount of demand within Asia Pacific – which accounts for more than 50% of the global market. However, the price points are lower and the fact that the US has practically shut its doors mean that competition will drive prices down again.
This may be particularly harsh for Indian resin manufacturers, as Chinese resins – which have been hard to come by locally due to the supply crunch – will undoubtedly flood the market. Interestingly, the anti-dumping duty on Russian resins into India has expired recently, implying that here too, they have a good opportunity to enter the market.
Value realignment
When India imposed anti-dumping duties on China and Russia back in 2010-2011, the effect was not as beneficial to Indian resin manufacturers as initially assumed. This was because processors shifted their demand from buying raw materials from China to buy semi-finished goods. Traders who were earlier importing resins, now began dealing in rods and sheets.
It is therefore equally likely that in the US too, the market will shift such that semi-finished and finished components get imported, rather than resins. Ultimately, the US has a significant appetite, and this needs to be met one way or another. One cannot imagine a processor in the US agreeing to pay a 200% duty, when they can just as well import finished products with no such penalty.
It should also be noted that while Chemours may certainly want to monopolize the North American market as it once did, it simply may not have the capacity to satisfy the local demand. As a result, shortages will push clients to look further up the value chain for their requirements. In protecting the interest of a few large companies, the US may have just killed of a large portion of its processing industry, which was no doubt dependent on Indian and Chinese resins for staying competitive.
Poly Fluoro Ltd. is a globally recognised processor of fluoropolymers and CNC machined polymer components, bearings and tubings. Visit us at www.polyfluoroltd.com