Showing posts with label carbon ptfe. Show all posts
Showing posts with label carbon ptfe. Show all posts

Friday, April 4, 2014

Charting the standards used in defining PTFE properties

It was recently brought to our notice by an astute client that the data quoted in many of the generic online sources did not give a complete picture of the values and correct test methods needed in checking the properties of PTFE.
A quick online search of a given property of PTFE churns out a number of data sheets from various supplier websites. And although the values and standards more or less match across these sources, our own study has revealed the following:
  1. Some of the standards quoted are incorrect
  2. The values quoted do not have any reference as many of the standards only specify the test method and not the value reference
As a result, with an obscure polymer like PTFE, we find that information has been carried forward from older data sheets and passed on until no one is very sure what the “correct” value is anymore. We ourselves have reached a dead-end on a number of metrics, but we have done our best to fill the gaps using verifiable data.
Let’s look at point (1) above. The most commonly quoted standard for PTFE is ASTM D 1457. We see this standard in a number of places and only after trying to buy a copy online were we informed that ASTM D 4894 had replaced the ASTM D 1457 in 2001.
Clients who – due to the effect of legacy – still refer to the ASTM D 1457 sometimes get upset when we send them test reports quoting ASTM D 4894 and it requires some discussion with their QA team before the new standard is accepted.
However, even the ASTM D 4894 only applies to virgin PTFE. For filled grades of PTFE, we refer to the ASTM D 4745. This again requires a discussion with the client as is especially problematic when the client orders a very specialized grade. Since the ASTM D 4745 only covers the more general filled grades of PTFE, clients who order an irregular grade feel frustrated that there is no standard pertaining to their requirement.
Both the standards, however, do provide some basic values of tensile strength, elongation and specific gravity, which help in checking whether the properties attained after testing are in line with the requirements.
However, as the table below shows, very few of the standards actually give any values. For a whole list of properties, the standards only tell you how to check the value, but do not make any recommendations on what those values should be. Furthermore, due to PTFEbeing a niche polymer, some of the standards – such as ASTM D 2240 – actually pertain to other materials and the test method is simply employed for PTFE.
VirginFilled grades
StandardValue in standardStandardValue in standard
DensityASTM D 4894YesASTM D 4745Yes
Avg. Particle SizeASTM D 4894YesASTM D 4894Yes
Tensile StrengthASTM D 4894YesASTM D 4745Yes
Elongation at breakASTM D 4894YesASTM D 4745Yes
Shore D HardnessASTM D 2240NoASTM D 2240No
Linear Expansion Coefficient (-50°C to +15°C)ASTM E 831 / ASTM D 696Yes (696)ASTM E 831 / ASTM D 696No
E-modulus (tensile)ISO R 527NoISO R 527No
Wear resistance (with Taber abraser method)ASTM G 195-08NoASTM G 195-08No
Deformation Under Load – Total deformation after 24HASTM D 621 ANoASTM D 621 ANo
Static Coefficient of frictionASTM D 1894NoASTM D 1894No
Dielectric StrengthASTM D 149NoASTM D 149No
Dieelectric ConstantASTM D 150NoASTM D 150No
As mentioned earlier, my client was curious to know what benchmarks were being followed when we quoted the values expected for each metric. However, we were unable to find any organisation that actively published data on PTFE and its filled grades.
In trying to trace back the values seen across so many data sheets (they are all in the same range, so we assumed they have some common source), we were able to find references old manuals released by DuPont, Dyneon and Daikin from where these values were obtained. Obviously, once we referenced DuPont, the client was satisfied and we were able to neatly define both the correct standard and the value with the proper reference.
It is however interesting to note that as widely used and accepted as PTFE is, there still does not exist any up-to-date properties standard that can be used by manufacturers as reference. The DuPont website does have values of virgin PTFE – but they reference the ASTM D 1457 – which suggests that maybe the information is dated. Not to say that the values would have changed significantly, but QA is a continuous process and something published within the last decade might offer a lot of support to both manufacturers and OEMs alike.

Friday, September 13, 2013

Demystifying Rulon

We have earlier looked at Turcite B* and explained how it is a result of a very successful branding exercise that has stood the test of time. In truth, as we now know, Turcite* is a PTFE based composition and has been successfully substituted in many applications with equivalent PTFE formulations.
Another very successful branding venture has been that of Rulon*. Although we do not see the demand for Rulon* being as high as that of Turcite*, there has been a very conscious and well thought out strategy which has kept the compositions of this brand ambiguous, to the point that clients find it very tough to accept any alternatives.
In addition to this, the unique pigmenting of each Rulon* grade offers further ambiguity. Visually, a client is unable to reconcile with a substitute when the colors do not match. It should be mentioned here that in many cases, we have seen that pigments help alter the properties of PTFE in a very measurable and positive way. For example, the green-blue pigment of Turcite* has been proven to offer better PV values than the same composition in, say brown color. Therefore, while the pigmenting of Rulon* does help the branding considerably, we would assume the pigments themselves were not chosen randomly, but by testing different variants and choosing the one that had maximum impact on the properties required.
We have done some research to try and lay out the compositions of the most popular Rulon* grades, in the hope that it will make the choice a little easier for an OEM or manufacturer. In most cases, these appear to be regular PTFE grades that have been made unique using pigments. In some cases, such as Rulon J*, the grade is not regular, but can be easily blended as long as one knows the composition. The table below shows the various compositions and attributes of the most common grades of Rulon*.
Product DescriptionFiller DetailsMax Load (Mpa)Max. PV ((psi-fpm); Mpa-m/s)PropertiesColour
Rulon LRPTFE+15% Glass6.910,000; 0.35High creep and abrasion resistanceMaroon
Rulon ARPTFE+25% Glass6.910,000; 0.35Wear resistant, improved hardness, lower thermal expansion, lower deformation under loadMaroon
Rulon 142PTFE+Bronze (40-60%)6.910,000; 0.35High thermal conductivity; better creep resistance; linear bearing materialTurquoise
Rulon 641PTFE+15% Mineral6.910,000; 0.35Used mainly in food processing, FDA approvedWhite
Rulon JPTFE+15% Polyimide5.27500; 0.26Good friction against soft metalsGold
We would like to point out a few things pertaining to the values of this table:
  1. The Load values of Rulon* across grades seem to be considerably lower than those of comparable regular grades of PTFE. For example, PTFE+15% Glass has a tensile strength of >20 Mpa when tested in-house – which is almost 3 times what Rulon* offers. The reason for this lowering of load metrics is not quite known. Most likely the addition of pigments causes some sacrificing of load values
  2. The PV values are comparable with regular grades of PTFE, however not so vastly different that it makes Rulon* superior in any obvious way. For example, Rulon LR* offers a PV of 10000, whereas PTFE+15% Glass offers only 7500. However, Rulon AR* also offers a PV of 10,000, whereas PTFE+25% Glass offers 12,000.
In a nutshell, we do not believe that the uniqueness of Rulon* pertains to any significant improvement in properties, but to a branding push given when PTFE was still an ambiguous material for many buyers. In recent times, many clients have adopted substitutes as they rightly feel the premium attached to Rulon* material is unjustified. Although rigorous testing is first done to prove that the substitute matches up with Rulon*, we have found that regular materials are more than equal to the task.
* Rulon is a brand name of Saint-Gobain Plastics; Turcite is a brand name of Trelleborg Sealing Solutions

Thursday, July 19, 2012

Applications and Considerations for PTFE Seals


As a sealing element, PTFE has proven itself many times over. PTFE is used in seals because it encompasses all the properties essential for a good sealing element, mainly:
  • High wear resistance
  • Low coefficient of friction
  • Moderate hardness (allowing for better overall mating with metal parts)
  • Durability – both with temperature as well as corrosion
While these properties are not new to us, every material has a limit to how much it can withstand. Furthermore, every grade of PTFE offers something different to the sealing application. Understanding these limits and differences gives us a better understanding into choosing and applying PTFE seals to best suit the requirement.
Sealing is vital to almost any mechanical assembly. It serves to both retain fluid within the assembly and allows the assembly to function freely. A good sealing material – such as PTFE, needs to be elastic enough to close gaps and assist with the fluid retention while strong enough to take the wear load applied on in by (usually) metal mating parts. Still, within any assembly, there is likely to be some trade off between fluid retention and durability, and this is where the choice of grade becomes important. Typically, the following metrics needs to be studied:
Surface Finish
PTFE wears off in layers, and will usually deposit a coating on the mating surface. In general, it is easy to attain a surface finish of as high as Ra < 0.4 on a virgin PTFE part. However, once we introduce other materials such as glass, carbon, graphite or bronze into the mix, there is a huge drop in the finish. We have successfully attained a finish of Ra < 1.2 on PTFE+15% Glass seals – but going below this is always a challenge.
For the mating part, the surface finish is somewhat more important – as it is usually a metal can wear the PTFE out significantly faster if not properly finished. When the metal surface is rough, more wear occurs until the crevices and valleys within the metal are filled with PTFE. PTFE will wear in direct proportion to the surface finish. Testing shows that the life of the seal is doubled when the finish is improved from 16rms to 8rms.
Surface finish also affects the sealing ability of PTFE. A rough finish creates a microscopic “line of sight” channels allowing a flow path through mating parts. Hence, when sealing gases with small molecules, such as, hydrogen, helium, or oxygen, a 2-4 RMS is highly recommended.
Hardness
When the mating part is hardened (via heat treatment or plating), there is a significant improvement in the life of the seal. Typically, when a hard and soft surface are in contact, there is an exchange of ions, which can lead to adhesion. This reduces the effectiveness of the seal. Improving the surface hardness of the metal part can control the adhesion.
PV Value
PV is an often-quoted metric for all PTFE grades. It offers a trade-off between the pressure that the PTFE can take, against the speed at which the mating part is sliding against the PTFE.  Understanding PV is key to understating whether the PTFE grade being considered at would be able to withstand the combination of load and RPM involved.
Disregarding PV values would almost certainly lead to a failure in the seal to perform. We have received many requests to look into the replacement of standard phosphor-bronze bushings, bearings and seal with PTFE grades. In most cases, PTFE looks to be a perfect substitute along most metrics. However, when we look at the pressure it can withstand under high RPMs, PTFE is not always suitable.
Types of seals
Given the diversity in automotive and mechanical applications, a number of different PTFE seal dimensions have been developed – each with it’s own unique property. When we cross these dimensions with the different PTFE grades, we end up with potentially hundreds of seals. Thus, choosing the right seal is important and a lot of thought needs to go into the same, before a decision is made.
The spring-energised seal is a sealing device consisting of a PTFE ‘energized’ by a corrosion resistant metal spring.  Put simply – as PTFE is a soft material, it can be easily deformed by the metal parts surrounding it. The spring acts as a strengthening medium – allowing the PTFE to take loads while also applying force on the sealing surfaces to create a tighter fit and ensure no leakages. The spring also provides resiliency to compensate for seal wear, gland misalignment or eccentricity.
Types of such spring energised seals include:
Finger Spring:
This is mainly used in dynamic applications, has good sealing and a low coefficient of friction. It is recommended for surface speeds up to 250ft/min.
Coil Spring:
This is designed for more static or slow dynamic applications. It is not as flexible as the finger design – owing to the fact that the spring is coiled and more rigid as a result. However, it is significantly better than the finger design in sealing – due to the uniform pressure applied on all sides by the coil spring.
Double Coil Spring:
A more augmented version of the single coil – this is designed for purely static applications, such as cryogenics. The increased load applied by the double coil significantly improves sealing ability.
O-ring Energised:
This can be used in both static and dynamic applications and offers a good balance between the seal-ability of the coil energised seal and the flexibility of the finger spring. It is typically incorporated in areas where metallic springs cannot be used due to compatibility issues.
Rotary Lip Seals
Lip seals are used primarily to seal rotary elements such as shafts and bores. They provide a self-lubricating medium between (usually) two metal elements – allowing for both smooth rotation and good sealing. Common examples include strut seals, hydraulic pump seals, axle seals, power steering seals, and valve stem seals.
Lip seals may be designed with or without springs – depending on the application.
The examples shown above are merely indicative of the basic designs available in PTFE seals. In truth, each of the above types of seals may be expanded into many variants, depending on the exact requirements of the mating elements involved in the OEM designs. Furthermore, each may be provided in any of a number of grades of PTFE compounds available.
Choosing a PTFE compound for your PTFE seals
The grade of PTFE is a critical choice in the design of the seal. We have touched elsewhere on the variants and properties offered by the commonly used fillers in PTFE. In a nutshell – glass offers stiffness and creep resistance; bronze and molybdenum di sulphide offer wear resistance, but increase the coefficient of friction; carbon and graphite offer wear resistance and dimensional stability.
In our experience, a mixture of glass and molybdenum di sulphide offers the ideal sealing properties for most applications. However – the exact grade is usually a choice made by the OEM, based on what information we are able to provide.

Monday, May 9, 2011

PTFE Compounds and their effects

We have shifted to www.polyfluoroltd.com/blog - do follow us there

We have spent a significant amount of time looking at PTFE as a material, comparing it to other materials and analyzing its uses based on the various properties it exhibits.
However, our focus has been purely on “virgin” PTFE – namely, PTFE in its pure form. In this form, PTFE takes on an opaque-white hue, is best describes as a soft-waxy material and is smooth to the touch.
Compounding PTFE refers to the mixture of PTFE with additives, which would both add and remove certain characteristics from virgin PTFE. It is essentially a mixture of PTFE with other substances – done for the purpose of enhancing one or more of the characteristics of PTFE, so that the compounded material would be a better overall fit to a given application.
Compounding Process
Before we delve into the various compounds, let’s look briefly at the process behind PTFE compounds.
In truth – most of the large resin manufacturers (DuPont, Daikin, Solvay etc.) have focused on manufacturing virgin resins and left the compounding to smaller companies – who buy the virgin resin and use it in making their compounds. Although the compounder is very much the owner of the product’s quality – it must be mentioned that the input resin does have a huge impact on the final quality of the compounded grade.
For example – we had procured a large quantity of PTFE+Bronze resin from a Chinese company, only to find that when we moulded large pieces from the resin (in excess of 15-20 Kgs per piece) – the pieces would crack during sintering. When we took it up with the supplier, it became apparent that the base resin was of a poor quality, and unsuitable for large pieces.
The compounding process is usually a proprietary technology of the compounder. However, technical literature will point to one of two ways to compound resin:
1. - Physical blending – a physical process, done in an industrial blender where PTFE and the additives are added in the required proportion. The blended powder is then sifted through a mesh to separate the mixture from ‘lumps’ of PTFE that tend to form during blending. The process is repeated until all lumps are suitable removed.

Blending like this is a tedious process, and requires much iteration. Even when care has been taken, small lumps may still remain which will result in patches of white (assuming the blend is pigmented) on the final product.

- Chemical blending – this is more expensive, but also ensures fewer iterations and more uniformity in the blend. A range of chemicals is available for this process – but the basic principal is to have a liquid aid with a lower surface energy than PTFE. This will allow the pigment to flow in between the PTFE molecules so that even the lumps are suitably coated with the pigment.
However, the finer aspects of compounding are usually learnt only through experience and remain a technology that compounders would not part with easily (understandably!).
We have looked at these before from a theoretical standpoint. Some of the properties remain unaffected (or hindered) by the addition of fillers, while others are impacted positively.
Temperature Resistance
It would be sufficient to say that compounded grades have to have at least, if not higher temperature resistance than PTFE – as else they would not survive the sintering process – which happens at 350-400 °C
Dielectric Strength
In most cases, this is only reduced by the addition of fillers – as PTFE in its virgin form shows exceptional electrical resistance. We have yet to come across an application where a filled grade of PTFE is used for purely insulation purposes
Hardness
Being a soft material, the addition of fillers can greatly increase the hardness. This is especially sought after in PTFE components – where the softness of the material can lead to deformation in the long run, affecting the overall assembly within which the component is used.
Coefficient of Friction
Like with dielectric strength, the dynamic coefficient is usually hindered with the addition of fillers. However, because virgin PTFE exhibits significant creep – there is a case for filled grades in applications with minimum movement where a low static coefficient of friction is required.
PV Value
The PV value of a compound is the product of the unit load P (MPa) on the projected area and the surface velocity V. The PV of PTFE is usually enhanced by the addition of fillers.
Wear
In general, the addition of fillers to PTFE resins improves wear resistance but reduces abrasive resistance by providing discontinuities in the PTFE resin which can be entered by sharp practices that may tear the material.
Moisture Absorption
Unfilled PTFE does not absorb water. Filled PTFE compounds absorb small amounts of moisture. Since PTFE resin and fillers are not hygroscopic, any moisture picked up simply fills the voids. Extent of pickup is so small that the dimensional stability is essentially unaltered.
Chemical Resistance
Again – given PTFE is unmatched amongst other materials in its ability to remain intern to chemicals, adding fillers can only reduce this property. However, it does depend ultimately on the application and whether there is a requirement for such a high level of inertness. Typically however, for applications needing this property (medical, labwares etc.) – virgin PTFE remains the preferred choice.
Standard Compounds
Now that we have looked at each of the properties, let’s look at some of the standard compounds and see how each compound alters the characteristics.
Glass Fiber
This is the most universally used PTFE filler and is normally mixed in either 15% or 25% ratios. Glass is itself highly resistant to chemicals and also exhibits very good dielectric properties; add to this the added mechanical properties and creep resistance that it provides and it’s not difficult to see why it is so sought after.
Glass fiber also offers improved wear resistance, but reduces the coefficient of friction. Furthermore, it imposes a higher wear rate on the tools while machining– making it a slightly more expensive material to machine. For the same reason, it is very difficult to ‘skive’ glass filled PTFE tapes to thicknesses of under 0.25mm – as the wear induced on the skiving blade renders the blade dull before a significant length can be skived.
Carbon-Graphite
Graphite is generally used in compounds destined for chemical and mechanical service. Graphite reduces initial wear and provides general strengthening characteristics to the composition. Also, graphite compounds generally display high load carrying capabilities in high-speed rubbing contact applications and exhibits the highest hardness of any of the compounds.
Of all the compounds, we have found Carbon-Graphite to wear out tools the fastest. The same tool that might give 200-300 components if done in virgin PTFE, will only give 15-20 components in Carbon-Graphite.
Bronze
Bronze is usually mixed in a 40% or 60% ratio. Bronze compounds have higher hardness, lower wear, higher comprehensive strength, better dimensional stability, higher thermal conductivity, lower creep and cold flow than most other compounds.
However, test data shows that bronze compounds are not suited to many electrical applications or to those that involve corrosive service environments.
Molybdenum Disulfide
MoS2 adds substantially to the hardness, stiffness and wear resistance of PTFE resins. It reduces starting friction and has little effect on PTFE 's electrical and chemical properties. Generally, only small amounts of molybdenum disulfide are used, most often in conjunction with complementary fillers (usually bronze or glass).
In addition to the above fillers, we have used fillers of ceramic, stainless steel and ekonol. Many branded compounds of PTFE continue to exist (eg: Rulon, Turcite etc) – but a comparison of properties shows that there is little difference between the branded compounds and one of the regular grades.
-----
Ultimately, choosing a compounded grade is a question of application – asking which property needs to be enhanced and which can be foregone (or compromised on). In most mechanical applications, it becomes a trade-off between higher mechanical properties (hardness, wear resistance, creep) and lower coefficient of friction.
It should be noted than very rarely does cost play a huge decider in choosing a compounded grade. While historically, bronze has been most expensive, followed by glass and then carbon-graphite (virgin PTFE has usually been priced around the same level as carbon-graphite) – their properties are so different that the end user rarely sees them as substitutes.
To know more, please view our site: www.polyfluoroltd.com; or view our PTFE (Teflon) Manual