At Poly Fluoro Ltd. we started our journey with
PTFE and gradually expanded into other polymers. Initially, this was at the behest of existing customers, but over time our expertise in machining plastics meant that we were comfortable offering a variety of options to our clients, rather than try and force fit PTFE into their application.
We discovered the benefits of
PEEK in one such exercise. Although we have already blogged extensively on the benefits and properties of PEEK, our own experience in dealing with this material serves to explain much of the commercial and technical queries surrounding this material.
PEEK in India is a small market in terms of volumes. The total consumption is only about 35 Tonnes. Of this, most of the material is imported as semi-finished rods and sheet, with only 12-15 Tonnes being processed from resin indigenously. Small as these numbers are, keep in mind that semi-finished PEEK sells at anywhere between US$275-US$400 per Kg – so in value terms, the market is not as small as the volumes suggest. Nonetheless, it is very much a niche market – even among speciality polymers.
Being present in the PEEK market as a processor poses many challenges. Some of these are technical in nature, while others relate to the commercial issue (PEEK is very expensive) and how clients respond to PEEK. Again, we have touched on some of these points in our earlier article – but as we have delved deeper into PEEK processing, many new findings have arisen.
Compression moulding PEEK not a simple affair
There are many challenges in compression moulding PEEK and most of these do not get explicitly highlighted in manuals and guidebooks. In most manuals, the process is outlined in 5-6 basic steps, which at first glance make PEEK appear a very friendly material to deal with.
In reality, the process is time-consuming, highly sensitive to the exact process needed and very specific in the type of tooling required.
The benefit of compression moulding PEEK over, say extrusion is that we are able to make customized dimensions based on the customer drawings. The stock piece for a part measuring 70mm in diameter can be moulded as 72mm, rather than using a 75mm rod. Over a 50mm length, this saves almost 25 Grams per part – which is significant when we consider the cost per Kg. Furthermore, if the part has an internal diameter the saving is even more, as the same cannot be attained in extrusion for large diameters.
However, against this saving, the time consumed to make a 50mm part would be many times what extrusion would take. Compression moulding is known for low productivity and even a large processor is only able to consume 20-25 Kgs per day of production. In India, however, where labour is inexpensive, this is not a huge cost factor – it only limits volumes. And since PEEK is still a low volume polymer – even processing 4-5 Kgs a day can be significant.
The actual process of compression moulding PEEK is also not straightforward. The 5-6 steps mentioned in the manuals each contain nuances that need to be fine tuned until you reach a process that most suits the equipment available. In our own experience, we have found that over 25-30 trials had to be taken, each using up between 250-800 Grams of resin. After each trial, some parameters were changed before taking another trial. Parameters such as pressure, peak temperature and soak time all need to be varied to control issue such as porosity, cracking, black spots and cold spots.
In addition to this, the selection of dies is critical. PEEK, in its molten form can be a very aggressive material and we have had many steel dies get corroded during moulding. Again – finding a balance between a strong die metal and the correct process is critical in obtaining a final process that is both economical and productive and which yields a high quality final product.
Variants and substitutes do exist for the price conscious
We have had some success in blending PTFE with PEEK ratios of 5%, 10% and 15% by weight (ie: PTFE+5/10/15% PEEK). Again – the process of blending is not straightforward and the PTFE itself needs to be processed slightly differently owing to the fact that PEEK melts at a higher temperature than PTFE. However, the final blend has proven to be useful in applications involving sealing and needing high wear resistance, with a low coefficient of friction.
Another alternative to PEEK is PEK. PEK is very similar to PEEK and is processed in much the same way. As far as properties go, some have even suggested it is slightly superior on some parameters. Commercially, it is roughly half the price of PEEK – which makes it a very tempting alternative. However, PEK is still being proven in OEM applications, whereas PEEK has been around long enough to give any OEM designer confidence in its properties.
Marketing PEEK is a challenge
In a market like India – which is highly price sensitive – PEEK is a difficult product to win customers over with.
PEEK is usually the last choice of any OEM due to its price, and if someone has not come across the material before, it takes some educating before they are convinced that any polymer exists at such a price. And while PEEK is well established in the West – in India, it is still very nascent in comparison and clients do not always see the long-term benefits of using it.
Furthermore, the relatively recent introduction of PEK into India is threatening to take some of the long-term market share from PEEK, as in a price sensitive market, people may be willing to make the gamble on a cheaper substitute.